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Abstract

An imaging system that consists of a laser scanning
a surface and a heterodyne receiver that measures the back-
scattered field is considered. When the scanned surface is
rough compared to the wavelength of the incident laser beam
the coherent properties of the laser beam are destroyed in
the backscattered field. This incoherence induces a noise
in the resulting image that is commonly referred to as
"speckle".

The rough surface is modeled crudely by multiplying
the incident scalar field by a reflectance term and a random
phase term. The reflectance is the "signal" that is desired
to be measured; The two dimensional fields are propagated
from one plane to another through the Huygens-Fresnel inte-
gral. The random phase is considered to be a zero mean
stationary Gaussian random process whose variance and cor-
relation distance are a function of the rough surface. It
is shown that the correlation function of the field is very
narrow when the field is reflected frqm surfaces that are
rough compared to the optical wavelength. A complex cur-:
rent representation is used to show that the mean of the
output from the optical detector is zero. However, the
statistics of the amplitude and amplitudé squared of the
current do result in a mean "signal" and théy are developed
in a manner similar to the well known narrowband noise

model. Second moment models for detection of the amplitude




of the current and for detection of the amplitude squared
of the current are presented. The mean "signal" and co-
variance "noise" functions are related to the field corre-
lation function, the reflectance of the surface, and the
system parameters. The system parameters include the
scanning velocity, the Gaussian laser beam spot size, the
receiver aperture size, the optical wavelength, and the
observation distance. The noise models describe both the
average speckle cell size in the image and the contrast
in the image that is due to the speckle noise. It is
shown that the form of the model is the same for both the
far field and near field cases. The models developed in
this thesis provide a basis for determining the "optimum"
signal processing method for producing the "best" image

quality.
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A SPECKLE NOISE MODEL FOR OPTICAL
- HETERODYNE LINE~SCAN IMAGERY

1. Introduction

The objective of this thesis is to analyze an optical
heterodyne line-scan imaging system for the case of rough
surface reflection, Fig. 1 is an illustration of the system
with an accompanying simple block diagram. The models
developed in this thesis will include all but the final two
blocks shown in Fig. 1. In thevsystem a laser illuminator
scans the object surface in a pattern that will result in
complete "once only" coverage of a certain area. The
scanning system also reflects the field backscattered from
each illuminated spot onto an optical heterodyne detector as
the beam is scanned over the surface. The backscattered
field is a function of the reflectivity of the object's
surface therefore, an image of the surface can be obtained
from the detected field. If the object's surface is opti-
cally smooth then specular reflection will occur and the
field will not be reflected directly back to the detector
except when the beam is normally incident on the object sur-
face. However most surfaces are rough with respect to
optical wavelengths so that a portion of the field is con-
ftantly backscattered to the detector. While this rough
surface provides the energy needed for detéction it also
distorts the reflected wave and the resulting image because

the exact form of the surface roughness is "a priori"

1
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unknown and constantly changing as the beam is moved to
different areas. This image distortion is commonly called
"speckle".

In this thesis all optical fields will be considered
monochromatic or quasimonochromatic and will be mathemati-
cally propagated from one point to another by using the
Huygens-Fresnel integral. The rough surface will be modeled
using statistics and the optical detector output current
will be based on known detector models. The resulting
statistics of the detector output current will be used in
modeling two methods of signal detection. The statistics
of the final_detected signal will be a function of the

system parameters such as the laser beam spot size, the

. scanning velocity, the detector aperture size, and the opti-

cal local oscillator field. The effect of the parameters on
the reflectivity "signal" and the speckle "noise" will be
discussed within the context of each model.

First the background necessary for development of the
system model will be presented. Then the system model will
be developed and finally the two types of signal detection

models will be presented and discussed.




.

II BACKGRUUND THEORY

Before the system model can be developed tt 1s
necessary to establish a background in several areas. In
order of discussion thes2 areas are: the phenomenon of
"speckle," the forms of the Huygens-Fresnel integral, the
use of statistics in modeling, and the process of detection.
Speckle

When the image of an object is produced either through
direct detection or heterodyne detection, a random inter-
ference pattern also results which breaks up and distorts
the desired image. This random interference pattern has
been named "speckle" and is the result of the roughness of
most object surfaces compared to the wavelength of the inci-
dent radiation. Of course, the radiation must be coherent
to observe an interference pattern. The most obvious example
of speckle js the direct observation of the pattern produced
at a rough surface that is being illuminated by a visible
laser. This phenomenon was first noted in the early 1960's
by Oliver (Ref 1:220) and by Rigden and Gordon (Ref 2:2367-
2368). The use of the term "speckle" has grown to include
any random diffraction pattern which disrupts the coherent
properties of some form of radiation., Speckle occurs in
many different circumstances, including rough surface scat-
tering, atmospheric transmission, and holography. Much
information covering the different areas of the subject is

now available including a complete Journal of the Optical
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Society of America volume (Ref 3) and a book edited by Dainty
(Ref 4). Dainty also includes a good introduction that
briefly covers the history of speckle related phenomena.

Also the theory of the scattering of electromagnetic waves
from rough surfaces is excellently described 1in a book by
Beckman (Ref 5). Goodman has specialized much of this infor-
mation for the case of optical intensity radiation (Ref 4:
Chapter 2, 16:1688-1700). The major concern in this thesis,
however, will be for the case of fhe direct measurement of
optical fields.

Huygens-Fresnel Integral

The real scalar optical field, u(v¥,t), is in general a
function of time, t, and space, r, where r is a vector with
Cartesion components (x,y,z). A temporally modulated field

located about frequency, f_, can be written as

0

u(r,t) = A(F.t)cos[ZHfot + ¢(F,t)]
= Re{A(F,t)exp[-J¢(F.t)]exp[-Jznfotl}
= Re{U(r,tlexp[-j2nf t]} (1)

where Re{+} is the real operator and U(¥,t) is the complex
envelope of the complex representation of u(¥,t). The tem-
poral Fourier transform of u(¥,t) 1s
Felu(F,t)) = 2F 10(F,t)e 32Tt
1 - ‘ . A
* gFelur(F,t)ed2 ot (2)

where Ft[g(t)] = fg(t)expl[-J2nf t)dt and the asterisk, (*),

5
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represents the conjugation process. From a graphical repre-
sentation of Eq. (2), shown in Fig. 2, it can be seen that
the transforms of U(r,t) and U*(r,t) are centered at the

minus and plus frequencies of fo respectively. If u(r,t)

$IF 1u(F 0]

s

20—
-fo fo f
“Fig. 2. The Magnitude of Ft[u(F,t)]

_ is unmodulated the complex envelope equals U(r) and the
Fourier transform becomes two Dirac delta functions that
are located only at frequencies plus and minus fo' This
field is then called mohochromatic because of the one 3
frequency component. If u(r,t) is modulated, i.e., time
varying amplitude or phase as represented in Fig. 2, then

the field is called quasimonochromatic provided the band-

width, B, of Ft[U(F,t)] is much less than f_, i.e., B<<f . ,
Thus for either monochromatic or quasimonochromatic fields ‘
the complex envelope of u(r,t) can be used to represent the

field and the real field can be obtained through Eq. (1).

Therefore, throughout most of this thesis, the complex en=

velope will be used and the expontential optical time func-

tion suppressed. In addition, the field is often described




at a particular z plane so that the field varies only in
x and y. Thus, the unmodulated optical time varying field
at a z plane can be described through the complex envelope,
U(x,y).

As shown by Goodman (Ref 7:58), the complex envelope of
a monochromatic field at a point in one plane can be
expressed in terms of the complex envelope of a field at
another plane through the following Huygens-Fresnel integral

equation:

1
U(x,y) = /f ++——
z JAro;

exp[jkr01]co$(ﬁ,F01)U(a,B)dadB (3)
The vector F01 is shown in Fig. 3, k is the magnitude of
the propagation vector which is equal to 21/A, A is the
optical wavelength, and cos (B.FOI) is the cosine of the
angle between F01 and the normal to the a,B plane. Eq. (3)
can be simplified through several approximations. If the
angle between n and FOI is limited to less than 18° then
the cos (ﬁ.FOI) is approximately equal to one. The inte-
gral over the aperture, I, can be replaced by an integral
of infinite limits if the finite extent of the field,
U(a,B), due the aperture is included in the mathematical
description of U(a,B). In addition, if the distance z is

much greater than the maximum linear distance from the z

-axis, then ro1 in the denominator can be approximated by z.

The above restrictions have put the integral in a simpler

form and are discussed in greater detail by Goodman,

e
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Fig. 3. Diffraction Geometry (Ref 7: 57)

(Ref 7:58), The integral now becomes:
U(xy) = 35z /7 UCa,Blexplikrq;ldads (4)

The integral {s stil1l not very useful because of the rg,
term in the exponential. But, because the exponenttal {s
very sensitive to small changes tn the value of exponent,

extra care must be used in making any approximatfons tn the




exponential. The two approximations commonly made at this

point are the Fresnel and Fraunhofer approximations.

Fresnel Approximation. The Fresnel approximation is

made by writing o1 from Fig. 1 as:

?‘01 - [22+(a-x)2+(8_y)2]1/2=2[1+(g%5)2+(_8_;x)2]1/2 (5)

Since the absolute value of the difference terms divided by
z is less than one, the binomial expansion to the square

root can now be used to write:

rop = 2l1+p(87 « (B2 Lex) 4y (6)

Now if the maximum linear distance is such that

22 5> R ((a-x)? + (8-9)212, (7)

then the higher order terms beyond the squared terms may
be neglected and Eq. (4) reduces to the Fresnel approxima-

tion given as:

U(x,y) 959}%551 p U(a.B)exp[%%[(a-x)z

+ (8-y)?11dads (8)
= $hy 2, ¥
expljkzlexp[5-(x“+y°) e
U(x,y) = o 17 U(a,8) exp 3X(a24g?))
exp[l%gE (xa+yB)ldadB ) (9)

Fraunhofer Approximation. The Fraunhofer approximation

is used when:

P S S e S g A



P
z > ELE_%Q_l‘ (10)

max
If Eq. (10) holds, then the squared phase terms may be neg-
lected in the integral of Eq. (9) and the Fraunhofer

approximation is written as:

expljkz]exp[%f(x2+y2)] -
U(X’Y) = 5 U(G»B)
Jaz -
exp[ZL (xa+ y8)]dads (11)

The integral in Eq. (11) can now be recognized as the two
dimensional Fourier transform of U(a,B) evaluted at the
1 = ..._x. = _l
spatial frequencies fx iz and f'.y TR
One-Dimensional Huygens-Fresnel Integral. In many

cases the effect of the basic parameters in a system can be
: adequately described in simpler terms through the use of the
one-dimensional Huygens-Fresnel intergral. In this case the
field at the z plane is variable in only one lateral direc-

tion. The integral is now written as (Ref 22:316):

2

. 1 X
expli(kz-z)lexplikyz] = kol
(Az)llz {i U(a)expl z ]

exp[-12n§%lda : -  (12)

U(x) =

Up until this point it has been implied that the
Huygens-Fresnel integral can be used only for monochromatic
waves. However, the integral may be used for quasimonochro-

matic waves provided % >> |r01|max where ¢ is the speed of

c
light (Ref 7:108). B is the bandwidth of the complex en-

velope as shown in Fig. 2.

10
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Propagation and Reflection of a Laser Beam. When

Eq. (11) is used to propagate the output from a laser
source the result is a Gaussian spherical wave (Ref 8:306)
of the following form

02+82
wl(z)

where A is an amplitude term . The beam spot size at the z

U(a,B8) = A exp[ijIexp[jif («?+8%)1expl ] (13)

plane, w(z), is the radiai distance where the total beam

amplitude is o1

times the center amplitude. If it is now
desired to reflect this wave directly back from normal
incidence on a smooth surface using the same coordinate

system, then the exponential phase terms must be conjugated.

By conjugating the exp[jkz] term, the wave now propagates

in the oposite direction, and by conjugating the exp[jig
(02+82)] term, the spherical phase fronts are inverted.

The inversion of the wavefront can be seen by simply drawing
rays and then reconstructing the wavefront. More formally
the spherical wave can be broken up into an infinite sum of
plane waves of different angles of incidence. The surface

boundary conditions can be applied to each plane wave and

the resulting sum then used to reform the reflected spheri-
cal wave. In addition, since a wave is seldom totally
reflected, a reflection coefficient, a (a,B), that is a

- real function of the particular surface must be multiplied |

times the incident field to complete the process of reflec-
tion, (Ref 9:74). 1In general the reflection coefficient

depends on the 1ncident angle and polarization of the |

11




incident field and on the index of refraction of the surface.

The reflected field is modeled as

U.(a,8) = a (a,8)U](a,8) (14)

where r denotes the reflected wave and i denotes the inci-
dent wave

Statistics in Modeling

In many instances the exact nature of the desired sig-
nal field is unknown either because the signal itself is
unknown or because a known signal has been distorted by
some type of unknown interference, or both. In these cases
it is useful to model the system through the use of
statistics.

In statistics a random variable is an unknown function,
X, whose possible values are best described by a probabil-
ity density function (Ref 10:92-136). Each possible value
of x is called a sample point. In many cases x is also a
function of time, termperature, space, or any other index
and is then called a random process (Ref 10:298-339). Thus
a random process is a collection of réndom variables that
are indexed by another parameter so the probability density
also becomes a function of the index. For any particular
value of the index, (x) is a random variable. For any fixed
value (sample) of a random variable (x) s still a function
of the index and is called a sample function. To describe

the random process completely, all orders of the combined

12
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probability densities for all possible values of the index
must be known (Ref 10:311). But, in practice this requires
more knowledge of the random process than is usually avail-
able. Therefore a limited statistical description of the
system, called a second moment model, is commonly used.
The mean, variance, correlation, and covariance function
are used in a second moment analysis.

The mean of a random process, x, is in general a func-
tion of the index, t, and is denoted as E[xt] where E[-]
is the expected value operator (Ref 10:Chapter 7). The
mean is the first moment of the process and is often called
the expected value of the process or the ensemble average.

The mean crudely represents the "most likely" sample func-

* tion of the random process and is usually directly related

to the desired signal. The variance describes the average
of the square of the fluctuations about the mean and is

defined by (Ref 10:244)

o2(t) = El(x,-Elx,1)%1 = E0xd1 - E2(xy] (15)
where again the index, t, has been included because x is a
random process. The variance is usually considered an
indication of "noise” in the system because it is a measure
of the variation or fluctuations of the random process from
the desired mean term. The square root of the variance is
usually denoted as the standard deviation or the rms varia-

tion from the mean.

13
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Since the process yaries with the index, the mean and
variance are not sufficient information to describe how the
process is related to 1tse1f at different values of the
index. This relationship is described to some degree
through the correlation (or autocorrelation) and covariance
functions., The covariance function is defined as (Ref 10:

317)
c (t,,t,) = Ef(x, ~E[x, 1)(x, ~EIx, 1)
x't1° %2 t 8 8, t,

= EIxtl xtzl - E[xtI]E[x ]

ts
= R (t;,t)) - E[xtllEIth] (16)

where Rx(tl’tz) is called the correlation function. If
t,=t, then the covariance i1s equal to the variance and if
the mean is zero, the covariance is equal to the correla-
tion function.

Because the covariance depends on the individual
values of the index, it may still require more information
than is usually known. But, in some cases the statistics
can be considered stationary at least at the second moment
level (Ref 10:325). Under this condition the mean becomes
a constant (independent of the index) and the covariance
and correlation functions depend only on the absolute
-difference in the index values, t,~t;=at=t, This assumption
may appear invalid for a particular random process, but {t
only means that the process is being described by a rather

crude but still useful set of statistics. Under the condi-

14




tion of stationarity, Eq. (16) now becomes:
exle) = R(x) - ELx) | a7)

The covariance and correlation functions of a real random
process can be shown to be even functions of t with their
maximum magnitude at t=0 (Ref 10:323)., Also, for a nonperi-
odic process, the correlation function approaches the square
of the mean and the covariance abproaches zero as T
approaches infinity. In many cases the effective non-zero
value of the covariance occurs over just a short length of

t from the origin. This period of T is called the correla-
tion or coherence period (time, distance), Teo of the random
process. Although the exact point at which the covariance
can be considered to be zero for a particular function may
be rather arbitrary, Te roughly represents the distance (or
time separation) between samples of the process such that
the samples become unrelated i.e., uncorrelated. A typical
sample funclion with statistical parameters crudely ident-
ified 1s shown in Fig. 4a. A sample correlation function

is shown in Fig. 4b.

Measurement of Optical Signals

To retrieve the information from an optical signal,
there must be some means of measurement, Most available

_optical detectors are square law devices that measure the

intensity of the incident field, 1.e. Iu(x,y)}2 (Ref 11:1819),

However, homodyne and heterodyne techniques can be used to

measure the actual field with its accompanytng phase

15
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information. While the system to be discussed in this

thesis is a heterodyne system, a brief discussion of direct

detection will be given first so that the difference tn

the necessary field stafist1cs can be related, The detectors

considered here will be modeled as ideal, i.e., all quantum
effects and noise terms will be neglected. -This will allow
the speckle noise term to be isolated in this thesis. The
detector noise terms can always be added to the model {if it
becomes necessary.

Direct Detection. The ideal instantaneous output of

an optical detector is defined as (Ref 12:91)

o 80 s o .80 2
i(t) = ﬁ%; e =1 i5 [0 10gCxoy) [Pdxdy (18)

d
" where q is the charge of an electron

n is the quantum efficiency of the detector
h is the Planck's constant
f, is the optical frequency

P. is the optical power collected by the detector

surface

Agy 1s the area of the detector surface

Us(x,y) is the signal field incident on the detéctor.
Thus this sytem directly measures the intensity of the
field and is referred to as direct detection.

The mean current {s

ELH(E)) = g 47 ELU (x,y)U  (x,y) 1dxdy (19)
d

17




where the asterisk denotes the complex conjugate of the
field. Therefore the expected value of the current is re-
lated to the expected value of the intensity of the field
or the correlation function of the field. Stimilarly the
correlation function of the current is related to a fourth

order moment of the field as shown below:

EL(£)i(t)] = (;30)2 ffig ELU (%,y]U (x,y)U (x",y" U}
(x',y')ldxdydx'dy* (20)

Heterodyne Detection. In.a heterodyne system the in-

coming signal field is added to a local oscillator field,
ULO(x,y,t), by means of a beam splitter. The local oscil-

lator field is at an optical frequency of Tyt With

i
this arrangement the ideal detector output current becomes

(Ref 13:481-487)

1) = 507 (U Gyst) + UL o(xs¥,t) | Zdxdy

d

*
- Aﬁf (LU (x,y) [242Re U (x,y DU o (x,y)expl-j20f ct1]
+ 1U g (xy) |22 dxdy s

where Re[+] is the real operator. The first and last terms
in the integral are centered at zero frequency and can be

.filtered out so that the remaining output is at the inter-

mediate frequency, fIF’ as shown below

* H
i(t) = %%% il Re{Ug(x,y)U  o(x,ylexp[~j2nf .t]}dxdy (22) i
d

i




Since the expected value and real operator are both linear
they can be interchanged and, assuming that the signal field
is the only random quantity, the expected value of the cur-

rent is:

2 *
ELT+(t)] = 143 if Re{E[US(x,y)1U o(x,y)exp[-2Jnf  tI}dxdy (23)
d
Thus for heterodyne detection the mean of the current f{s

related to the mean of the field. This is in contrast to
the case of direct detection where the mean of the current
from Eq. (19) is proportional to the correlation of the

field, i.e., E[Us(x,y)ug(x,y)]. The correlation function

of the current for heterodyne detection is:

2 *
CEL(R)i(er ) = (33 E[ffig Re{U  (x,y)U; o(x,¥)
expl-J2f  ct JRefU (x',y" U o (x',y")

expl- jZHfIFt']dxdydx'dy'

n

(%%%)zRe{ffgg EIUs(x,y)US(x',y')]U:O(x,y)
U:o(x',y‘)exp[-jzanF(t+t‘)]+E[Us(x,y)
U:(X'.y')]UEO(x,y)ULO(x',y')exp{-JZHfIF
(t~t')ldxdydx'dy'} (24)

where identity Re[AJRe[B] = Re[AB+AB*] has been used,
Therefore in heterodyne detection the correlation of the
current 1s related to the correlation of the real parts of

the field and is in general nonstationary.
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The discussion of the background theory is now com-
plete. The task is to now use these models and ideas that
have been presented in this section to develop a complete

system model for the heterodyne line-scan imaging system.
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III. THE SYSTEM MODEL

Now that the background theory has been discussed the
system model can be developed. First a phase model for the
rough surface will be established, then this phase model
will be incorporated into the total heterodyne line-scan
imagery model. From the system model the mean and covar-
jance functions of the complex output current will be
determined. For simplicity the model will be developed in
one dimension as explained jater;

The Rough'Surface Phase Model

The reflection from a rough surface is in general a
very complicated process that involves the surface reflec-
tion coefficients, the surface height variations, the
macroscopic and microscopic angles of incidence, and the
polarization of the incident field. Since the system dis-
cussed here involves the imaging of many different types of
surfaces with characteristics beyond the system's control,
and since the usable information is only in the direct back-
scattered radiation, a more simple phenomelogical model will
be used. The model, which was also used in a similar direct
detection imaging problem (Ref 14:779-785), is less com-
plicated than Beckman's (Ref 5:Chapter 5) but is closely
related. The model will be developed under- the following
conditions: (1) scalar fields will be used, (2) depolari-
zation effects, multiple scattering, and shadowin§ will be

neglected, as is typically the case (Ref 5:Chapter 3 and 5,
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6:1689) since the effects are often small and yery difficult

to describe mathematically, (3) the surface will be con~

sidered rough as compared to the optical wavelength as dis-
cussed in more detail later so that backscattered radiation
exists and total specular reflection does not occur, (4)
the radius of curvature of the surface irregularities will
be assumed large as compared to the optical wavelength

(Ref 5:20), and (5) the field reflectivity will be considered

a real function of space with a value between zero and one
so that it attenuates the incident field such that the
reflectivity is the surface characteristic to be measured,
i.e. the signal.

Under the-above conditions the reflection from a rough
surface will be modeled by including a random phase term in
the process of reflection from a smooth surface given by
Eq. (14) in the background section. The reflected wave is
then:

Upta) = ala)ed®@uf(a) (25)

The random phase can now be related to the surface heights.
First, the surface heights, h(a), will be modeled as a sta-
tionary zero mean Gaussian random process. The zero mean
follows from the fact that any constant reference can be
added to the model such that the ensemble a&erage becomes
zero, A Gaussian distribution is commonly used to describe
a rough surface (Ref 4:65, 3:1153, 1195, 1205, 1212, 1224,

5:80) but may break down for some polished man made surfaces.
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As will be discussed later this is not a particularly

necessary assumptton, but tt does make the problem easter
mathematically,

As can be seen from the sample function of Ftg. 5, the
total path difference between a wave reflected at h(a) and
a wave reflected at h(o) referenced to a constant spherical

phase front is
2 "2 ‘2 2
ar = d+k3- - h(a)+d-KSo - h(a)-d-K9__a+kSi2n(a) (26)
an so the phase variation becomes:

o(a) = £(2n(a)) = 2L n(a) (27)

incident
wavefront

e et e ava— - oo—

reflected
wavefront

N J\J\« [\ /\ ' ﬂ
VVIUVY W U

e o e G e . e— — —

~

dvar

Fig. 5 Model for Determining the Path Differences
Induced by the Rough Surface
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The mean of the phase is

Er6(all = A% E1n(ali=0 (28)

and the variance of the phase ts:

og = f@i : cﬁ - (4:;'1)2 (29) ;

From Eq. (29) it can be seen that the rms roughness of the

surface, Ons can be directly compared to the wavelength, A.

When the wavelength is large compared to o,, the rms varia-
" tion of the phase is small ;nd there would be 1ittle pro-

blem with interference. But, as “h approaches the value of
" A or greater, the rms phase variattions become Tlarger than
201 radians, and destructive interference will result. An

example of some values of rms surface roughness is shown in

Table 1. Most exterior metal surfaces will fall in the :
§
Table I Values of Surface Roughness :
Name rms roughness ;Zﬁ{aﬁgigﬁgk s
micro- micro-
inches microns fnchas microns

Rough 1000 25.4 3500 88.9

Semirough 500 12.7 1750 44.45

Med1ium 250 6.35 875 22.2

Semifine 125 3.18 455 11.56

(From Ref. 15:859)

e ——————————



category of rough to semirough and thus would also be con-
sidered rough as compared to an optical wayelength, Also
most other nonmetalic surfaces are rough compared to metal
surfaces so they, too, would he rough compared to an opti-
cal wavelength,

Later in determining the moments of the fields 1t wil]
be necessary to take the expected value of the random

exponential phase terms as follows:

Ered®) (30)
EIeJIe(a)-B(Q')J]=E[eJ¢] (31)
and - predlolalrelatily o predyy (32)

The above two equations represent a form of the character-

istic function (Ref 10:419)

9, (v) = EredV¥] (33)

for the case of v=1. For a Gaussian random variable, x,
the characteristic function i1s well known and equals (Ref
10:420):
vzcz
¢,(v) = expIJvEIxX] - ~] (34)
Thus, for Eqs (30), (31) and (32), y=1 and the mean is zero

so the characteristic function equals:

-92 i
Erel?] = e—% (35)

where y=6,¢, or y as required, The variance of 6 was

determined in Eq. (29). For a stationary zero mean
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Gaussian random process the variance of ¢ is computed as

follows:
of = Ef(0(a)-0(a'))?1-E2[0(a)-0(a")]
= £16%(a) +6%(a')-20(a)0(a')]
2
= 20e - ZRS(Aa)
= 20§(l-p(Aa)) (36)

where Aa=a-a' and p(Aa) is the correlation function of the
phase normalized to one at Aa=0. p(Aa) is also identically
the normalized correlation function of the surface heights,

h(a). Similarly

03 = 20§(l+p(Aa)) (37)

The Heterodyne Detector Current Model

The rough surface model is now complete and must be
incorporated into the system model. The output field from
the illuminating laser will be propagated to a rough sur-
face, reflected, and propagated back to the detector by
means of the Huygens-Fresnel integral equation. The
detector current will be determined from this.field. Then
the statistical moments of the current will be determined
and it will be shown that the system can be described in

terms of the complex current output of the detector.

.The Real Current. The mechanics of the heterodyne line-

scan system scan the laser radiation across the scene to be
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imaged and the detector measures the backscattered field.
The system mechanics also keeps the detector surface and
local oscillator field aligned normal to the direction the
laser is pointing. However, the angle of incidence between
the laser field and the object surface will change as the
beam is swept across the object. In principle the coordin-
ate rotations required to describe this scanning system
could all be included in the Huygens-Fresnel integral but
the problem becomes more complicated than useful. There-
fore, the system will be modeled with the laser, detector,
and associated fields in a fixed coordinate system. The
laser beam will be normally incident upon an object surface
whose reflectivity and random phase characteristics are

effectively moving beneath the beam in time and with veloc-

ity, V. Both the spreading of the beam spot and the changing

surface velocity that occur as the beam is swept over the
surface will be ignored. But, the model will be a function
of the beam width and the velocity so the above effects can
be determined simply by varying these parameters. Also, at
any instant of time, the detector output is proportional to
an average of all the reflectance values at each point with-
in the beam spot and detector field of view. Because the
laser beam is circular in shape, the reflectance points

- covered by the width of the beam at each point in the

scanning direction will change slightly as the beam is moved.

But, the basic change in the average reflectance is caused
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by the reflectance points that enter and leave the beam in
the scanning direction. Thus the model will be developed in
the scanning direction only, where the reflectance at each
point in this direction can be thought of as an average of
the reflectance over the width of the beam. The extension
of fhe model to both lateral dimensions is straightforward
but more tedious.

The system geometry is shown in Fig. 6. From Eqs (12)

Laser

. Detector

) > X

!

\

'

1

L]

|

|

|

|

|

|

]

|

|

: >0
| l'-vt-.nL |

//f/ff///'///////7/‘]/////////7///3(,a+vt)
z

Fig. 6 System Geometry

and (13) the one dimensional field from the laser at the ob-

Ject surface is:
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g explj(kZ-%)]
Ujla) = G172 A expl- (—(—y) Jexp(§%%- 1 (38)

From Eq. (25) where the reflectivity and random phase are
now properties of a moving surface, the backscattered field
is:

j B(a-vt) ,

Ur(a) = a(a-vt)e 1(a) (39)

The reflected field is now propagated back to the detector
through the Huygens-Fresnel integral of Eq. (12) but since
propagation is now in the negative z direction the phase

terms of the Huygens-Fresnel integral of Eq. (12) must also

be conjugated so that the field at the detector is

..ii} exp[-j(kZ- )lexp[- Jk ] ? 0 (a) % ]
a) = a)exp J
d (Az)1/2

exp[JZH ]du (40)

From substituting Eqs. (38, 39, and 40) into Eq. (22) the

detector output current becomes

i.(t) = %%ﬂ%; Re{exp[-jZ(kZ-%)] {i Pp(x)a (atvt)

kx2

exp[(—(-y) leXPIJe(a+vt)]exp[ J———lexpl 5=

*
exp[jZH%%]ULo(x)exp[-jZHfIFt]dxda} : (41)

“where PD(x) is the 1imiting detector aperture function. A f
simplication to Eq. (41) can be made by realiiing that

Po(x) can represent a lens aperture and transfer function
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or just the detector aperture size. If the local oscil-
lator field is a plane wave the x integral in the above
equation yields the Fresnel diffraction pattern of PD(x).
However, this can be simplified by realizing that in most

cases PD(x) is narrow enough to satisfy the Fraunhofer type

approximation given by Eq. (10). If this is not the case the

2
exp[-jE%;] phase term can still be negated either by a con-

jugate lens transfer function (converging lens) or by an
identical phase term from the local oscillator field. In
_any case ULO(x), exp[pji%;]’and any phase term in PD(x)

can be all combined to equal one, so that PD(x) is now just

the limiting aperture size. The x integral is now the

spatial Fourier transform of Pp(x) evaluated at f_ = X%'
The transform of PD(x) is denoted as:
FlPp (1| o = Ppele) (42)
Az
Equation (41) now reduces to
i.(t) = BRa{exp[-jZ(kz-g)]éxp[-jZHfIFt] / h(a)
'kaz
exp[jo(a+vt)] a(a+vt)exp[-j—;—]da} (43)
- 2qnA
where B hfoxz
o] 2

h(a) will be referred to as the system functipn and repre-
sents the combined result of the beam spot size and the

detector field of view.
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The Complex Current, As was seen in Eqs, (23) and (24)

the moments of the current could be obtatned by taking the
real part of the moments of the complex current, Thus, the
moments of the complex current will now be determined. 1In
determining tiese moments the phase terms in front of the
integral in Eq. (43) can be dropped. It will be shown
later that these phase terms are indeed unrelated to the
problem solution. Thus the useful complex current is de-

fined as:

.

. i .
f(t) =8 ¢ h(a)a(a+vt)exp[J6(a+vt)]exp[-J5%—]du (45)

Since the rough surface phase term is the only random

term in Eq. (45) the mean of the current using Eq. (35) is
- 09 2 i kaz
E[i(t)) = B exp[—i—?l—] fh(a)a(a+vt)exp[—j—;~qda (46)

where epr:LS%lE] is the value of the characteristic func-
tion from Eq. (35). The value of the characteristic func-
tion for a surface with o, > A in Eq. (29) is 5x10"3% or
less. For typical values of A=.1, n=1, and fa=c=3x108

Eq. (46) becomes (5x10'35) (1,6x105) (L/z) where L {s the
value of the integral in Eq. (46), Since h(a), a(atyt) and
exp[iiégil all are terms with values less than one, L {is
equal to the beam width or less and thus the mean current

is effectively equal to zero,
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With a zero mean, the covariance of the current equals
the correlation of the current. From Eq (24) the correla-
tion involves the moments: Efi(t)i(t')] and E[i(t)i*(t')].

Using Eq. (45) the first moment is:

Efi(t)i(t')] = B2

-0

I/ h(a)h(a')a(a-vt)a(a'-vt')E[exp{j[®

(a-vt)+6(a‘-vt')]}]exp[-jg(a2+a'2)]
dada’ (47)
From Eqs. (33, 34, 35, and 37) it is seen that the above
expected value term is another characterispic function and
is equal to:
6, (1) = expl-of(1+p(sa+vat))] (48)

" where (a-vt)-(a‘-vt')®a-vAt. The normalized covariance
function of the phase, p(AatvAt), varies between one and

zero so that Eqs. (47) and (48) equal zero under the same con-
ditions as for the zero mean current of Eq. (46). The

other moment is:
ECi(t)i*(t')] = B2 ££ h(a)h(a')a(atvt)ala'+vt' JE(exp(i(0

(atvt)-6(a’+vt' )1} lexpl-i5(a?-a'2))
dada’ : (49)

From Eqs. (35) and (36) the above characteristic function is

equal to:
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24(1) = expl-of(1-p(Aanyat))] (50)

This function has a value of one for AatvAt equal to zero
and decreases to exp(-cg) as AatvAt approaches tnfintity.
It can now be seen that the exp[-JZ(kz-%)] phase term of
Eq. (44) is cancelled because of the conjugation of the
current in Eq, (49). It also obviously has no effect on
the moments that equal zero.

It is necessary to determine a function to describe
the normalized covariance function, p(Aa), with At set
equal to zero for now. Beckman (Ref 13:81) suggests a

Gaussian function of the form

p(Aa) = exPI—(.ﬁﬂ-)zl (51)
C

where a. is the correlation distance defined at p(Aa)ne"l.
For optically rough surfaces Goodman (Ref 6:1698) points out
that a. is generally less than 0.1 mm, Kurtz (Ref 16:984)

has shown that when o, of Eq. (29) is equal to five or

0
greater the correlation distance of the field at the e~

1
point is then less than the correlation distance of the

rough surface by a factor of 1/00. Since it has been assumed
that h of Eq. (29) 1s greater than a wavelength, then %
will be greater than fiye and the correlation distance of
_the field through Eq. (50) will be less than géémm~= .02mm,
Equation (50) will now be called the field correlation pulse
function and denoted as P&(Aq) where & represents the fleld

correlation distance. PL(Au) is plotted in Fig. 7 as a
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PL(M) b

Fig. 7 Plot of Pz(A“)
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function of e% for several values of 9pe The plots clearly
show that the field correlatton distance ts 1a2ss than the
surface correlation ditstance for the case of a rough surface
and a Gaussian surface correlation functton. However, this
result 1s not strongly dependent on the shape of p(Aa). Eq.
(50) shows that any narrow surface correlatton function will
cause the field correlation distance, t, to be very small
whenever oh > A

2 2

It can be seen by Fig, 8 that aS-a'c 1s greatest when

"a-a' {s at {ts maximum value. a-a' ts now lTimited by the

2 to a-a'

Fig. 8 Comparison of o’-a'
field correlation distance, &, and o and o' maximum is deter-
mined by the beam spot size or the transform of the detector
aperture, whichever’is less, through the te}ms; h(ax) and
h(a'). By using the beam spot stze w(z) as the 1imiting

term in h(a)
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(ea?) | oy = WD) -2 P mw2)p-0P o (208 (52)

- 2
Now the phase term, exp[JEL&—Q%L~L], can be approxi-
mated by one if:

z 5> k(qz—q'z)l = kw(z ) (53)

max
For a beam divergences, ﬂiél, of less than fhree millira-
dians Eq. (53) will hold. Typically beam divergence is
about 1 milliradian, so the approximation given by Eq. (53)
appea;s reasonable. Equation (49) now becomes

E[i(t)i*(t')]1 = B2 f; h(a)h(a')a(a+vt)a(a+vf)P£(Aa+vAt)

-0

dada' (54)
_Equation (54) is identical to the far field case because

the quadratic terms no longer affect the result. At t=t'
Eq. (54) is the variance of the complex current. The cor-
relation function of Eq; (54) is nonstationary because of
the reflectance terms, so the correlation distance is diffi-
cult to define. But, an indication of the change in the
correlation function as At is increased and can be seen by

writing Eq. (54) as

2 5 n(ada(atvt]ih(alalatvt'1*p,

(atvat)lda (55)

E[i(t)i*(t')] = B

where * denotes the convolution process,
A graphical picture of Eq, (55) s shown in Fig, 2, The

maximum width L of h(a)a(atvt) and h(a)a(atvt') ts determined
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Fig. 9 Graphical Determination of the Complex Current
Correlation Distance

by the beam spot size or the Fourter transform of the detec-
tor aperture, whichever is less, From Eq. (55) and the
figure, the product of h(a)a(atyt) times the convolution pro-
cess is zero once vAt+2 is greater than L, Because the
function is nonstationary, this represents a maximum cor-
relation distance and since ¢ ;s L the correlation distance

is defined as:
vat # L ‘ (56)

The above result {s rather pleastng stnce tt would seem
natural that the output would become uncorrelated once all

of the original scattering areas passed out of the system.
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From Eq. (56) the correlation time {s
at = LMy (87)
and the noise bandwidth i{s approximately:

e-z{u{ (58)

The results of Eqs. (57) and (58) are stmilar to those for
the case of filtered "white" noise where the correlation
time is approximately equal to the response time of the

filter and the noise bandwidth is equal to the inverse of

the filter response time. However, if the reflectance

varies much within the correlation distance given by Eq.
(56), then the correlation function will be modulated by

the reflectance and the actual correlation distance and time
may become less than that given by the above equations. The
results presented so far have been based on the commonly
used assumption that the surface, and, thus the phase, 1s a
Gaussian random process. This assumption has made the pro-
blem mathematically tractible but is not particularly
necessary., It has been shown that the characteristic func-
tion of several distributions is very small when “h is on
the order of a wavelength or greater (Ref 14:781). Thus,
the mean of the complex current can still be considered
equal to zero. Also, the shape of Py(8a) determined as a
result of the Gausstan assumption ts not critical so long

as the correlation distance {s stt11 small. Thts'smail
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field correlation distance is a result of the reflection of

a wave from a rough surface, The rough surface by defini-
tion is characterized by a short correlation distance. Thus
the results presented sé far appear to apply to any realis-
tic natural rough surface,

The Signal Detection Models

Since it has been shown from Eq. (46) that the mean of
the complex current is zero, it follows that the means of
the real and imaginary parts of the current are also zero.
Therefore, the mean of the heterodyne detector output cur-
rent given by Eq. (43) is zero. This does ﬁot imply that
the mean of the amplitude of the current is zero. The
amplitude, A(t), can be identified by writing the complex
current as the sum of the real and imaginary parts of the

current as follows:

i(t) = 1r+J11=A(t)éose(t)+JA(t)sine(t) (59)

or by writing it in polar from as:

1(t) = A(t)ed®(t) | (60)

The value of the amplitude can be physically determined from
the detector output current by either coherent signal detec-
tion or envelope detection methods, and the amplitude
squared, A%, can be determined by square Taw detection

methods.
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The Quadrature Model. The statistical models for de-

tection of A and A2 can be related to the heterodyne detec-
tor output current by first looking at the well known
quadrature model (Ref 17:238). As can be seen from Fig.
10, one quadrature output is the real part of the complex
current and the other is the imaginary part of the complex

current. The statistics of the quadrature outputs can be

K% laigesseted
 Pass >
|Filter
\\A(t)cos(ZHfIFt+¢(t)) cos(ZHfIFt)
sin(ZHlet)
Heterodyne . A(t)sine(t)
sin
Detector ‘ | Pass 2 S
Filter

Fig. 10 The Quadrature Model

determined as follows. Beckman has shown, by using the
classical random walk problem and the Central Limit Theorem
that the real and imaginary parts of the scattered field are
joint Gaussian random variables (Ref 5:124). From this re-
sult it is straightforwarded to show that the quadrature
outputs are Gaussian random processes (Ref 10:504-509).

The results of Eq. (47) can be used to show that the

covariance of Ir and I1 are equal as follows:
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ECi(e)i(t')] = ECT ()1 (£')-T, (e)T (et )+3 {1 (¢)1,(t")
+ I(t')1(t)1)=0 (61)
which implies that for all t, t'
ECL ()T, (t"))=E[T,(t)I,(t")] (62)
and
ELI(t)I4(t"))1=-E[1 (t')1,(¢)] (63)

The terms of Eqs. (62) and (63) can be related to the covar-

iance of the complex current as follows:
ECE(E)ix(t')] = ECD ()T (e')+I ()T (0 )+3{T (t)I,(¢t")-
Ir(t.)li(t)}]
= ZERECEHE CE) FIH2IE LT () (t* )] (64)

Since all the terms in the expression for the covariance of
the complex current given by Eq. (54) are real, the cross
correlation of Ir and Ii in Eq. (64) is zero and Eq. (64)

becomes

ECi(e)i*(t')1=2E01 ()1 (t')] ' (65)

or

1 (g
FELI(t)i*(t")]

0? ' : ;

CELT ()1 ()

n o
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where ko(t,t)=1. From Eq. (63) it can be seen that Ir and
I; are {dentically distributed random processes, In parti-
cular, at t=t' the variances of the quadratures are equal
from Eq. (63), and they'are equal to one half the variance
of the complex current as shown by Eq. (66). The results
of Eqs. (64) and (65) have shown that I. and r1 are uncor-
related random processes, and because they are Gaussian,
they are also statistically independent. Thus at this
point it has been shown that the quadrature outputs are zero
mean, statistically independent, identically distributed
Gaussian random processes. Also, the distribution of
these random processes has been related to the complex
current by Eqs. (65) and (66).

Background Theory for Detection of A and AZ. The above

model 1s now equivalent to the well known narrowband noise
model (Ref 18:399-403).  The amplitude squared of the current
can be obtained from the quadrature model by squaring each
quadrature output and adding together the resuits. The
square root of this output is then the amplitude., This

model is shown in Fig. 11. The first order, i.e. single
sample, probability density of the amplitude is the ﬁay]eigh
probability density which is a well known transforimation

from the Gaussian probability density of the quadratures.
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Fig. 11 Determination of A and A2 from the Quadrature
Outputs '

The k" moment of the amplitude from the Rayleigh den-
sity 1s defined as

erafy = (2022420 (§ + 1)
= (@12 r(y 4 1) (67)

where T'(+) represent the Gamma function. These Rayleigh
moments have been previously suggested'for a heterodyne
system but the details of the model were not presented
(Ref 19:648-649),

A typical performance measure for a System is the sig-
nal to noise ratio, SNR. The SNR is defined as the ratio
of the signal power to the noise power, or, in statistical

terms, it is the square of the mean divided by the variance.
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A SNR of Tess than one implies that the signal is dominated
by the noise. A check of the SNRs for the two detection

processes can easily be made using Eq. (67) as follows.

2 o
sNR, = E[A(t)] _ 2 P R (63)
A 02 2 .2 I
A(t) 20r - r .
| -
and
E2[A(t)] 4°¢

9a(t) 803— 4°r
As can be seen from the above two equations.the SNRs aré
independent of all system parameters and thus are not a use-
ful performance measure for system design purposes. In fact,
the SNR represents a time independent measure of performance,
whereas a more useful approach is to use the covariance
function which includes the time dependence. The covariance
of A is given as (Ref 18:403)

2
¥ o ; 2 .
CA(t’t ) i '_2 {ZE[ko(t,t )]'ll'ko(t)t )]
' Il :
L[ko(t,t I ELR (70)

where K and E are the elliptical integrals of .the first and
second kind respectively. The covariance A2 is much

simpler and is (Ref 18:403)

cp2(t,t’) - sskolt,t*) » [C,(s.t' 12® (71)
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The information to develop the indiyidual models for detec-

tion of A and A2 is now ayailable ‘through the means from

Eq. (67) and the coyvariance functions of Eqs. (70 and (71),
The Model for Detection of A%. The model for A2 will

be discussed first because it is simpler and easier to
interpret. From Eqs. (54) and (67) the mean of A% can be
expressed in terms of the reflectance and system function

as follows.

E[Az(t)]=c§=82ffh(a)h(u')a(a+vt)a(a'+yt')Pz(Ad)dada' (72)

As previously noted, Pz(Aa) is very narrow with respect to
changes in h(a) and a(a) so as an approximation it can be

represented in terms of the Dirac delta function as follows.
Pz(Aa) = C8(Aa) (73)

where C = / P,(Aa)dAa. The system function, h(a), is also
- 00

symmetric so Eq. (69) becomes:

-

-]

EfAZ(t)] = ¢8% [£ h(-a)lh(-a)a(a+vt)ala'+vt')8(a-a")dada'

= ¢8% / n?(~a)a’(atvt)da

- @

c82 7 n2(vt-x)al(x)dx (74)

-

Thus the mean of AZ(t) can be represented by a Tinear system
model of a’(x) convolved with he(x). Again by using Eq., (54),
“the covariance of A® from Eq. (71) can be expressed in terms

of the covariance of the complex current as follows:

4s
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cp2(t,t') = (82 s7 h(a)h(u')a(a+vt)a(a'+vt‘)Pn(Aa+At)dada']2

= 132 f; h(vt-x)h(vt'-x')a(x)a(x')Pz(x-x')

dxdx' 12 (75)
the double integral in the above equation is identical to
that obtained in computing the output correlation of a fil-
ter with an impulse response h(x) driven by zero mean noise
of correlation Rn(x,x')=a(x)a(x')Pg(x-x'). The square of
the double integral in Eq. (75) simply means that the noise
can be represented by the product of two noise processes
that are identically distributed and statistically indepen-
dent. In contrast to many other noise models the above
model is signal ki.e. a(x))_ dependent. The second moment

model for squére law detection is shown in Fig. 12.

“\‘,

G (x) Jg2h2(x) () . N

ny(x)

——» Bh(x) ——"(X\; a

Elny(x)1 = E[n,y(x)] = 0
I} | e— Rnl.(x,X') . an(X.X') =

n,(x

-E————-v T4 ) R N—— a(x)a(x')Pl(x-x')

Fig. IZ 1ne Model for Detection of the current .
Amplitude Squared
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The speckle noise model presented above can be easily
modi{fied to include the quantum noise effects that were

neglected in the detector output current given by Eq. (21),

It has been shown that the output noise statistics for a
heterodyne detector can he represented as a Gausstan random

process (Ref 12:189). Thus these statistics are compatible

with the model presented here and the detector noise terms
can be included simply by adding the appropriate terms to 4
the speckle noise representation in Eq. (75).

Several things can be noted from the model for Az. The
output, AZ, can be considered either a spatial signal in
the variable x or a temporal signal in the variable t, where

the relationship between the two variables is x=vt. The

temporal Fourier transform of Az(t) using Eq. (74) is

F IEAZ(£)D] = %i—‘f e cand (76)
where H'(f)fF[hz(t)] and A'(f)=F[a®(t)]. From Eq. (76) is
can be seen that the frequency content of the output spectrum
will broaden as v increases., Thus the bandwidth of the
electronics that process the output must be scaled by v to

maintain the desired frequency content a2

in the final image,
The model for E[AZ(x)] is also identical to the result
discussed by Goodman for an tncoherent imaging system (Ref
.7:109). (In two dimensions the Fourier transform of hz(x,y)
divided by the same transform evaluated at frequencies L
fy=0 1s commonly called the optical transfer function, OTF.)
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Thus, square law detection can be thought of as an incoherent
imaging system with an additive noise term given by Eq. (75).
The spatial filtering by hz(x) and thus the system

function, h(x), can be seen by taking the spatial Fourier

transform of E[Az(x)] from Eq. (71) as follows:

2 Bakiha s
FOLETA®(x)11 = BECA'(f JH'(f,)
= BZCIA" (f, ) 1TH(F,)*H(F )] (77)

where H(fx)=Fx[h(x)]. Since the Fourier transform has an
inverse effect on the width of a function, the wider the
system function in space the narrower H(fx) becomes. As
H(fx) becomes narrower so does the convolution of H(f, ) with
itself and thus hore of the high frequency content of az(x)
is filtered out. Another way to see this filtering effect
is to look at the resolution of two point sources of reflec-
tivity that are separated by a distance d, i.e. az(x)=6(x)+
§(x-d). Then from Eq. (74):

E(AZ(t)] = B2C £ hE(vt-x)[6(x)+8(x-d)]dx
= 82ch?(vt)+%chZ(vt+d) (78)

As an example, it can be assumed that hz(x) is a Gaussian
amplitude function (consistent with a Gaussian laser beam),

and then the resolution limit can be picked as the point

1

where the peak of one function is at the e " point of the

other. Then from Eq. (78) i1t can easily be seen that d must"

1

be the distance at which hz(x) is at it's e " point if the

two points are to be resolved. So again the wider system
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function in space the worse the resolution ability of the
system. This is a very intuitiye result since the detector
measures an average of the reflectance points each wefghted
by the value of the sysfem function at that point. The
wider h(x) is then the more even this weighting becomes over
theiwidth of h(x). Thus, 1f two points of equal reflec-
tivity are to be resolyed by the system, they must be
separated by a distance large enough such that the dif-
ference in the weighting of each point is large enough to
cause a distinguishable effect in the detector output.

The effect of h(x) on the mean does not tell the com-
plete story since h(x) also effects the covariance of Az,

je.e the fluctuations of Az(x). The covariance of Az from

" Eq. (75) is nonstationary, but an indication of the correla-

tion distance can be determined from the correlation distance
of the complex current given by Eqs. (55) and (56). The
result of squaring the complex current correlation function
is to reduce the maximum correlation distance of Eq. (56)
slightly. Still, it can be seen that the wider the system
function the longer the maximum correlation distance,

The square root of the covariance at tst from E§. (75),
i.e. the square root of the variance, represents the rms
variation from the mean due to the "noise". This vartation
can the thought of as the contrast variations {n the output
1magé that are due to the rough surface (speckle) noise.

Also, the correlation distance represents the average period
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over which this noise process is related or does not change
"very much". Thus, the the correlqtion distance can be
thought of as the average speckle cell size in the resulting

image, and it is directly related to the width of the system

function, h(x), as was shown by Eq. (56).

The effect of the system function on the noise can
also be seen by looking at the nojse power spectral density.
The Fourier transform of the output covariance with respect
to vAt is called the power spectral density, S(fx) (Ref 20:
347). It represents the noise power per spatial frequency
that passes through the system.. The total output noise
power is found by integrating S(fx) over all frequencies.
The power in a particular frequency band is found by simply
integrating S(fx) over that band of frequencies.

The covariance of A2 given by Eq. (75) is nonstationary
so strictly speaking it is not subject to Fourier analysis.
But if the ffflectance is considered nearly constant (or

slowly varying) then the power spectral density of A2 is

2a%p (£, ) [H(F, ) [2*B%aP, (£ ) [H(F,) |2 (79)

s ,(f.) = B
A2 X
where PQF(fx)=F[Pz(Ax)]. Because Pg(Ax) is very narrow com-
pared to h(x), the spatial frequency spectrum of PzF(fx)
will be wideband or "white" compared to H(fx). Or, by again

approximating PZ(Ax) as Cé(ax) as in Eq. (73), Eq. (79) can

be written as:
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- cpd,d 2 2
SAz(fx) = CB a [|H(f ) |LIH(F )] (80)

Thus, as h(x) becomes wider, IH(fx)I2 becomes narrower, and
the total noise power out will decrease because of the
smaller non-zero ranges over which S 2(fx) will exist.

This completes the analysis of ﬁhe A2 model. It has
been shown by several approaches that the resolution of the
reflectance information is reduced as the system function is
widened to reduce the noise power or noise flucuations.

The model for envelope detec;ion w311 now be developed to
see ho@ the system function affects that method of detection.

The Model for Detection of A. The model for the

measurement of the amplitude is much more difficult because
of the expression for the covariance and the square root

involved. The mean of the amplitude from Eas. (54) and

967) is: |
ELA(t)] = B-L [s/h(a)h(a’)a(atvt)ala' +vt)P, (8a)dada’ 112 !
= B c1/2 12 (a)a?(atvt)dx) 1/ 2
- ——%-Cllz[fh (vt- x)a (x)dx] 1/2 (81)

This is the same expression (within a constant) as the square
root of the mean of A® from Eq. (74). Therefore the comments
following Eqs. (76) and (77) regarding the electronics band-
width and the system function apply for the detection of

the amplitude, too.
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The covariance of A from Eq. (70) was expressed in

terms of the elliptical integrals of K and E as follows:

ol

Caltat') = =5 (2E0Kky(t,t")1-11-K2(t,t0) 1KTk, (t,6)1-01 (70)

The elliptical integrals can be represented by the following
series (Ref 21:310)

o0

K(x) = % (e 3 (3 ertelsth 22 (82)
and
*® L j
E() = 3 Q- & 5 T (83)

j=1
The terms in the outer brackets of Eq. (70) can be combined
using x=k0(t,t') as follows:

5 (1e3e5....(25-1).2  x2j &y 1 -
AL & C o G e G

1.3.5...+(2§-1) 2 2§, I
g6 12) x*%) - 3

- 1z i D G - Haa? (84)

(84) can now be evaluated explicitly for the first terms
in the series as follows

g X)X g () Ceglaggg) xSeneees L

so the covariance of the ampliiude becomes:
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o2
cpt,t') = ARnd(e, LN IRDE CRI BT PTHCA
2 v
ot C,(t,t') 5, ) €, (t,¢') .
i 2 1,71 4 1
 vees]m 16[( 2 ) 'j"ﬁ"('-'-"—""'é""') + )
% %4
C.(t.t") c,(t,t")
(.—L—-—z———— 6+—4-(2—]—g-6~ v-:'-———év—vm)sc,-oo.n] (86)
%4 9y

The first term, except for the constants, is the same as

2

the covariance of A® from Eq. (71), where the square of

Ci(t,t') implied that the noise could be modeled as the

. product of two independent noise processes. In Eq., (86)

the sum of the higher order powers of Ci(t,t') implies that
the noise can be molded as a sum of independent noise pro-
cesses. Additionally each term in the sum is itself a
product of m independent noise processes where m is equal
to the power of the Ci(t,t') term involved.

For any t' not equal to t in Eq. (86) the term Ci(t,t')

is less than o% so the terms of Eq. (86) are rapidly de-

Colt.t")
creasing with the higher powers of “i"if“”‘ As the co-

%
herence Tength of C,(t,t') of Eq. (56} {s approached

Cy(t,t")
————7——— becomes very small and Eq. (86) can be quite

accurately approximated by the fipst term. Except for the
constants this approximation ytelds the same form as the
covariance of AZ from Eq. (75)., Thus the coherence dis~
tance can be considered to be approximately the same for

both methods of detection.
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If the power spectral density of Eq. (86) is deter-
mined in a manner similar to the case for A2 from Eq. (80),
the result would be a series of double, quadruple, and
higher order convolutions. This means that the noise
power is unlimited in frequency, although it is reduced in
amplitude at each higher order convolution. In fact, if
the value of the first term of Eq. (86) at t=t' is com-

pared to the variance of A using Eq. (67), the result is:
o
(_16_11) o, 2
: = 3 (z55) = 915 (87)
b S
2(2-5)

Eq. (87) shows that 91.5% of the noise power is concentrated

in the first term of the covariance of A when the covariance

function is at it's maximum value, i.e. at t=t'. It was

also determined in the previous paragraph that the first
term was an excellent approximation for the covariance of
A when the covariance is small, i.e. at the coherence time.
Thus, as a first approximation the noise covariance func-

tion can be represented as:

nic, (t,t')12

' © (88)
16 of

Ealsatt) »

for all t,t'. This approximation is in addition to the more
accurate first term approximation that was given for the co-
herence length. Again, except for the constants, the noise

representation is now the same as that for A2 given by Eq.
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(71). With this approximation the model for detectton of
A 1s given in Fig. 13,

2, \ [F—
LRI 2t o 2 #3800,
n (x) [11/%n
T
i Elny(x)] = Elny(x)] = 0
(x) |pl/4 Rnl(x'x') . an(x,x') =
"2t*) 1n/"h |
_2:}%_2)-(1 | a(X)a(x.)Pz(X—x')
1

Fig. 13 The Approximated Model for Detection of
the Current Amplitude

The system parameters now have the same effect on the
resulting image in both the A and A2 models although the
final image_is not the same because of the square root of
the mean in the model for detection of A. In fact, the .

2, i.e., the square of the

mean of A is proportional to a
field-reflectivity, and thus is directly related to the in-
iensity of the reflected field. Since the human eye also
measures intensity, the a2 1ma§e is proportional to the
reflectivity term that people are familiar with, On the
‘other hand, the mean of A is proportijonal to the field re-
flectiyity, a, and the resu]t_1s an image that ﬁay not be
natural to the human observer, However, this image is still

a valid representation of the surface characteristics,
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IV. SUMMARY

Conclusions’

As was stated in the background section, there is a
great deal of information available in the literature con-
cerning speckle as it relates to imaging systems that make
intensity measurements. Very little information was avail-
able on modeling the output of an optical heterodyne line-
scan imaging system. The purpose of this thesis was to
develop such a model that includéd the effects of the
speck]e nbjse, which is caused by reflection of the field
from a rough surface object. This rough surface, however,
is necessary in the scanning system to prdvide backscat-
tered radiation to the detector, otherwise the detector
would only receive a return signal the few times the laser
beam was normally incident to the object surface. The met-
hods of detecting either the amplitude or amp]itude squared
of the current from the heterodyne detector have been
modeled in this thesis. The amplitude of the current is
easily measured in an actual system by envelope detection
or it can be detected by more sophisticated coherent detec-
tion methods. The amplitude squared of the current can be
determined by use of comhon square law detectors..

Because the detector output is the average of all of
the reflectance points within the laser beam, it was argued
that the significant changes in the detector‘outpdt occurred

as a function of the scanning direction of the system. The
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reflectance at each point in the scanning directton could
be considered equal to the average of the reflectance
across the width of the beam perpendicular to the scanning
direction at that point, Thus, the system model was devel-
oped in the scanning direction only. The one dimensional
Huygens-Fresnel integral was used to propagate the laser
output to the object's surface and the reflected field back
to the detector. The laser and detector were modeled as
being stationary in a fixed.coord%nate system while the sur-
face éharécteristics were moved beneath the Taser beam. It
was pointed out that the effects of beam spreading and
changing surface velocity, that were ignored in this model

but which occur in the actual system, could be determined

from this model simply by varying the appropriate parameters.

In the development of the system model, the object's surface
was considered to be a zero mean Gaussian random process,
but it was later argued that the results were typical of

any naturally rough surface. It was shown fhat the rms
roughness of the surface could be compared directly to the
optical wavelength and that many surfaces are rough com-
pared to optical wavelengths. A system function was defined

which represented the combined effect of the detector field

of view and the laser beam amplitude function. Then the com-

plex current was used in determining the statistics of the
optical detector's output and it was shown that the mean

signal was zero when the objects surface was rough compared
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to an optical wavelength. It was also shown that the cor-
relation function of the reflected field was very narrow,

on the order of tenths and hundredths of a millimeter. This
narrow correlation function meant that the reflected field
was now spatially coherent over just a very short distance.
This fact allowed the quadratic phase terms to be neglected
which resulted in a model that was the same for both far

field and near field cases.

Because the mean of the detector output current was
zero, a mehtod of detection the amplitude or amplitude
squared of the current was included. The amplitude is re-
lated to the sum of the squares of the real and imaginary
parts of the current so the qﬁadrature model was presented.
The quadrature outputs were shown to be identically distri-
buted, zero mean joint Gaussian random processes. Based on
this result, it was concluded that the first order density
of the amplitude was Rayleigh and that the model was now
similar to the well known narrowband noise model. The sig-
nal to noise ratio for each detection method was calculated
from the moments of the Rayleigh density but in both cases
it was independent of the system parameters.

However, a second moment model for each detection pro-
cess, which included the system parameters, was developed.
The respective mean (signal) and covariance (noise) functions
were all expressed in terms of the previously determined co-

variance function of the compléx current. The amplitude
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squared signal model was shown to be identical to the Tinear
system model for an incoherent tmaging system where the
Fourier Transform of the system function squared represents
the well known Optical Transfer Function., It was shown

that the resolution ability of the system degraded as the
width of system function was increased in space, This was
intuitively pleasing since an increase in the width of the
system function causes more reflectance points to be 1in-
cluded in the averaging process and thus the effect of each
. individual reflectance point becomes smaller. The amplitude
signal model was developed and shown to be identical to the
amplitude squared signal model except for some constants

and the final square root of the output., The filtering

effects of the system function were the same for both models.

In each model, the noise covariance was shown to be
represented by the square of the complex current correlation
function and unlike some common noise processes it was a
function of the reflectivity signal. The models provided
considerable information about the speckle noise. The co-
herence length of the noise process represents the period
that noise is related and thus corresponds to the average
spéckle cell size in the image. This correlation distance
was determined to be equal to the width df the system funce
tion except that when the reflectivity variéd stgnificantly
over the same distance, it could become smaller. ‘The con-
trast in the image due to the speckle noise was given by

the square root of the variance and could be determined from
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the noise representation in the models. The models show

how the system parameters affect the signal and the speckle
noise and they provide the basis for developing signal pro-
cessing methods that will optimize the desired image. Also,
it was shown that the common heterodyne detector noise
models could be easily added to the speckle noise models
presented here.

Recommendations

Although the models developed in this thesis describe

the speckle effects, they do not provide a definite solution -

to the problem of producing the "best" image in the pre-
sence of speckle noise. It is recommended that optimization
techniques be applied to the models to determine what signal
-processing could be done to provide satisfactory system per-
formance. It would be helpful to know what the expected
spatial frequency content of the reflectance is so that the
reflectance signal power spectrum could be compared to the
noise power spectral density. Then a minimum acceptable
resolution criterion could be developed, and an appropriate
filter determined that would yield the desired resolution
while filtering those frequencies that reduce the image
quality. Also, this would allow comparisons to be made be-
tween the two signal detection models to determine which de-
tection method would yield the best performance. Of course
compafison of the models developed here with additional

experimental data would serve to validate them. Finally,
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the development of a similar model for optical direct de-
tection Tline-scan imaging systems would proyfde the basts
needed for determining which type of system should be

further developed,
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2 ABSTRACT (Continue on reverse side If necessary and identify by block number)
An imaging system that consists of a laser scanning a surface and a heterodyne

receiver that measures the backscattered field is considered. When the scanned
surface is rough compared to the wavelength of the incident laser beam the co-
herent properties of the laser beam are destroyed in the backscattered field.
The result is a noise in the image that is referred to as “speckle“

The rough surface is modeled by multiplying the incident scalar field by a ///
reflectance term and a random phase term. The random phase is modeled as a
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andom process whose mean, variance, and correlation distance are functions of
‘the rough surface. The statistics of the amplitude and amplitude squared of
the current from the optical detector are developed in a manner similar to the
well known narrowband noise model. Second moment models for detection of the
amplitude or amplitude squared are presented. The mean and covariance functions
of each model are related to the field correlation function, the reflectance of
the surface, and the system parameters. The noise models describe both the
average speckle cell size in the image and the contrast in the image caused
by the speckle noise. )
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